2ºBACH CCSS MUESTREO E INFERENCIA ESTADÍSTICA (CUESTIONES)
Muestreo e Inferencia Estadística
Cuestión (#1)
Se realiza un estudio sobre la pobreza extrema en Andalucía y para facilitar la recogida de datos se considera la formación de una muestra usando la guía telefónica. Comenta esta consideración.
Solución:
Cuestión (#2)
En un país se decide formar un nuevo órgano para la toma de decisiones: la Asamblea de Municipios. Estará formada por todos los alcaldes electos. Todas aquellas decisiones que competan al ámbito municipal se tomarán por mayoría simple en la que cada uno de sus componentes tiene derecho a un voto. ¿Qué te parece esta idea?
Solución:
Cuestión (#3)
En ese mismo país se decide formar un nuevo Censo Electoral: sólo podrán votar los mayores de \(18\) años de ese país que voluntariamente se inscriban en el “Censo del País”, pudiendo hacerlo en el municipio en que residan. De esta forma sólo se tiene en cuenta la opinión sólo de aquellos que realmente estén interesados en votar. ¿Cuál es la población y la muestra? ¿Qué te parece esta idea?
Solución:
Cuestión (#4)
En una fábrica de bombillas se realiza un estudio de caliad. Se toma una muestra de 100 bombillas y se dejan encendidas para estimar la duración media.
- ¿Cuál es la población y cuál es la muestra?
- ¿Por qué se recurre a una muestra en este caso?
Solución:
Cuestión (#5)
En las Elecciones Generales se eligen los diputados y senadores que nos representarán en las Cámaras. Explica cuál es la población y cuál la muestra en este estudio de la opinión de los ciudadanos. Un grupo de economistas propone que en las próximas elecciones generales sólo vote una parte convenientemente elegida del censo electoral. Con ello se conseguiría un importante ahorro y una gran facilidad en el recuento. ¿Qué opinión te merece esta idea?
Solución:
Cuestión (#6)
Una determinada característica de cierta población sigue una distribución \(N(10 ,2)\). Si formamos muestras de tamaño \(n=20\), ¿ cuál es la distribución de las medias muestrales?
Solución:
Cuestión (#7)
El \(30 \%\) de una determinada población presenta la característica \(C\) . Si formamos muestras de tamaño \(n=50\), ¿cuál es la distribución de las proporciones muestrales?
Solución:
Cuestión (#8)
Consideremos una distribución \(N(10,2)\). Si se toma una muestra de tamaño \(n=16\), obtén el intervalo característico para la distribución de las medias muestrales correspondiente a la probabilidad \(p=0.5\). ¿Qué significado tiene ese intervalo?
Solución:
Cuestión (#9)
En una población se tiene para determinada característica \(p=0.8\). Si se toma una muestra de tamaño \(n=50\), obtén el intervalo característico para la distribución de las proporciones muestrales correspondiente a la probabilidad \(p=0.90\). ¿Qué significado tiene ese intervalo?
Solución:
Cuestión (#10)
Tras extraer una muestra en una determinada población, obtenemos \((24.5,28)\) como intervalo de confianza para estimar la media de una población . ¿Cuál es el valor de la media muestral?
Solución:
Cuestión (#11)
Para estimar la media poblacional hemos obtenido mediante una muestra de tamaño \(n=30\), con el nivel de confianza del \(90 \%\), el intervalo \((20,30)\), indica si es verdadero o falso:
- La probabilidad de que la media poblacional se halle en ese intervalo es \(p=0.90\).
- La media muestral es \(25\).
- La media poblacional es \(25\), con un nivel de confianza del \(90 \%\).
- Para el \(90 \%\) de las muestras con dicho tamaño \((n=30)\) el intervalo anterior contiene a la media poblacional.
- Para el \(90 \%\) de las muestras con dicho tamaño \((n=30)\) el intervalo correspondiente contiene a la media poblacional.
Solución:
Cuestión (#12)
Para estimar una proporción poblacional extraemos una muestra y obtenemos \((0 . 34,0.46)\) como intervalo de confianza. ¿Cuál es el valor de la proporción muestral?
Solución:
Cuestión (#13)
Para estimar una proporción poblacional hemos tomado una muestra con tamaño \(n=30\). El intervalo \((0.4,0.5)\) es el obtenido para estimarla con un nivel de confianza del \(95 \%\), indica si es verdadero o falso:
- La proporción muestral es \(0.45\).
- La proporción poblacional es \(25\).
- La proporción poblacional se halla en ese intervalo con una probabilidad \(1−\alpha=0.95\).
- La probabilidad de que la proporción poblacional sea \(0.45\) es \(0.95\).
- El intervalo anterior contiene, con una confianza del \(95 \%\), la proporción buscada.
- Para el \(95 \%\) de las muestras con dicho tamaño \(n=30\) el intervalo anterior contiene a la media poblacional.