Ir al contenido principal
1ºBACH CCSS SISTEMAS DE ECUACIONES NO LINEALES (ACTIVIDADES)
Sistemas de ecuaciones no lineales
Actividades
-
\(\left\{\begin{array}{l} x^2+y^2=13 \\ 3x-2y=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2=10 \\ x^2-y^2=8 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-2xy+y^2=16 \\ x+y=6 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2=25 \\ xy=12 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-y=0 \\ x-y=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=x^2+4x+2 \\ x+y+2=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=x^2+4x+2 \\ 4x-y+2=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=x^2+4x+2 \\ x-y+2=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x+2y=0 \\ x^2+y^2=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 2x-y=3 \\ x^2-y^2=3 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 3x^2+5y^2=20 \\ 4x^2-y^2=-4 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-2(x-y)=35 \\ -x+y=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} xy=15 \\ \displaystyle{\frac{x}{y}}=\displaystyle{\frac{5}{3}} \end{array}\right.\)
-
\(\left\{\begin{array}{l} 2x-y=-1 \\ (x-1)^2+y=3 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-y^2=8 \\ xy=-3 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2-4x-6y+11=0 \\ x^2+y^2-6x-8y+21=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 2x^2-10y^2=8 \\ x^2-3y^2=6 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2=18-y^2 \\ x=-y \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+xy=77 \\ xy + y^2=44 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2=25 \\ x-\displaystyle{\frac{3}{4}}y=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} \displaystyle{\frac{1}{x}}+\displaystyle{\frac{1}{y}}=\displaystyle{\frac{5}{6}} \\ xy =6 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2=61 \\ xy=30 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2=25 \\ xy+12=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-xy+y^2=7 \\ x+y=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 2x^2-5y^2=13 \\ xy+3=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=1+2x \\ x^2+y^2+6x=16 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+xy+y^2=19 \\ xy=6 \end{array}\right.\)
-
\(\left\{\begin{array}{l} xy=8 \\ x+y=6 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x+y=6 \\ xy=9 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 2x^2-y^2=-1 \\ x^2+2y^2=22 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2+9x+14=0 \\ y^2=16+4x \end{array}\right.\)
-
\(\left\{\begin{array}{l} x+y=3 \\ \displaystyle{\frac{1}{x}}+\displaystyle{\frac{1}{y}}=\displaystyle{\frac{3}{2}} \end{array}\right.\)
-
\(\left\{\begin{array}{l} \displaystyle{\frac{1}{x}}+\displaystyle{\frac{1}{y}}=\displaystyle{\frac{5}{6}} \\ \displaystyle{\frac{1}{x}}-\displaystyle{\frac{1}{y}}=\displaystyle{\frac{1}{6}} \end{array}\right.\)
-
\(\left\{\begin{array}{l} \displaystyle{\frac{2}{x}}+\displaystyle{\frac{3}{y}}=\displaystyle{\frac{17}{12}} \\ \displaystyle{\frac{1}{x}}-\displaystyle{\frac{2}{y}}=-\displaystyle{\frac{1}{6}} \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=-x^2+4x+1 \\ x+y=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x-3y=-5 \\ xy-2x-y=1 \end{array}\right.\)
-
\(\left\{\begin{array}{l} (x+y)(x-y)=7 \\ 3x-4y=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} xy=4 \\ x^2+y^2=17 \end{array}\right.\)
-
\(\left\{\begin{array}{l} xy=15 \\ \displaystyle{\frac{x}{y}}=\displaystyle{\frac{5}{3}} \end{array}\right.\)
-
\(\left\{\begin{array}{l} x-y+3=0 \\ x^2+y^2=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2+y^2-5x-5y+10=0 \\ x^2-y^2-5x+5y+2=0 \end{array}\right.\)
-
\(\left\{\begin{array}{l} 4x^2-y^2=0 \\ 4x^2+3y^2=64 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x-y=15 \\ xy=100 \end{array}\right.\)
-
\(\left\{\begin{array}{l} y=\displaystyle{\sqrt[]{x+1}} \\ y=5-x \end{array}\right.\)
-
\(\left\{\begin{array}{l} x^2-y^2=3 \\ x^2+y^2=5 \end{array}\right.\)
-
\(\left\{\begin{array}{l} x+7=y^2 \\ \displaystyle{\frac{1}{x}}+\displaystyle{\frac{1}{y}}=\displaystyle{\frac{5}{xy}} \end{array}\right.\)
Soluciones:
-
\(x_1=2,y_1=3;x_2=-2,y_2=-3\)
- \(x_1=-3,y_1=-1;x_2=3,y_2=-1;x_3=-3,y_3=1;x_4=3,y_4=1\)
- \(x_1=1,y_1=5;x_2=5,y_2=1\)
- \(x_1=-3,y_1=-4;x_2=3,y_2=4;x_3=-4,y_3=-3;x_4=4,y_4=3\)
- \(x_1=0,y_1=0;x_2=1,y_2=1\)
-
\(x_1=-4,y_1=2;x_2=-1,y_2=-1\)
- \(x_1=0,y_1=2\)
- \(x_1=0,y_1=2;x_2=-3,y_2=-1\)
- \(x_1=2,y_1=-1;x_2=-2,y_2=1\)
- \(x_1=2,y_1=1\)
- \(x_1=0,y_1=-2;x_2=0,y_2=2\)
- \(x_1=-5,y_1=0;x_2=5,y_2=10\)
- \(x_1=-5,y_1=-3;x_2=5,y_2=3\)
- \(x_1=-1,y_1=-1;x_2=1,y_2=3\)
- \(x_1=-3,y_1=1;x_2=3,y_2=-1\)
- \(x_1=3,y_1=2;x_2=1,y_2=4\)
- \(x_1=-3,y_1=-1;x_2=3,y_2=-1;x_3=-3,y_3=1;x_4=3,y_4=1\)
- \(x_1=-3,y_1=3;x_2=3,y_2=-3\)
- \(x_1=-7,y_1=-4;x_2=7,y_2=4\)
- \(x_1=-3,y_1=-4;x_2=3,y_2=4\)
- \(x_1=2,y_1=3;x_2=3,y_2=2\)
- \(x_1=-5,y_1=-6;x_2=5,y_2=6;x_3=-6,y_3=-5;x_4=6,y_4=5\)
- \(x_1=-3,y_1=4;x_2=3,y_2=-4;x_3=-4,y_3=3;x_4=4,y_4=-3\)
- \(x_1=3,y_1=2;x_2=2,y_2=3\)
- \(x_1=-3,y_1=1;x_2=3,y_2=-1\)
- \(x_1=-3,y_1=-5;x_2=1,y_2=3\)
- \(x_1=-2,y_1=-3;x_2=2,y_2=3;x_3=-3,y_3=-2;x_4=3,y_4=2\)
- \(x_1=4,y_1=2;x_2=2,y_2=4\)
-
\(x_1=3,y_1=3\)
- \(x_1=-2,y_1=-3;x_2=2,y_2=-3;x_3=-2,y_3=3;x_4=2,y_4=3\)
- \(x_1=-3,y_1=-2;x_2=-3,y_2=2\)
- \(x_1=2,y_1=1;x_2=1,y_2=2\)
- \(x_1=2,y_1=3\)
- \(x_1=3,y_1=4\)
- \(x_1=2,y_1=4;x_2=4,y_2=1\)
- \(x_1=-2,y_1=1;x_2=4,y_2=3\)
- \(x_1=-4,y_1=-3;x_2=4,y_2=3\)
- \(x_1=-1,y_1=-4;x_2=1,y_2=4;x_3=-4,y_3=-1;x_4=4,y_4=1\)
- \(x_1=-5,y_1=-3;x_2=5,y_2=3\)
- \(x_1=-2,y_1=1;x_2=-1,y_2=2\)
- \(x_1=2,y_1=1;x_2=2,y_2=4;x_3=3,y_3=1;x_4=3,y_4=4\)
- \(x_1=-2,y_1=-4;x_2=2,y_2=-4;x_3=-2,y_3=4;x_4=2,y_4=4\)
- \(x_1=-5,y_1=-20;x_2=20,y_2=5\)
-
\(x_1=3,y_1=2\)
- \(x_1=-2,y_1=-1;x_2=2,y_2=-1;x_3=-2,y_3=1;x_4=2,y_4=1\)
- \(x_1=9,y_1=-4;x_2=2,y_2=3\)